setwd("d:/r") fish <- read.csv("fish.csv", header=T) fish F1 <- fish[,2] # ‹›‰î‹àŠz F2 <- fish[,3] # ‹›‰î”—Ê F3 <- fish[,4] # ‹›‰î‰¿Ši F4 <- fish[,5] # ‹›‰î•¨‰¿Žw” H <- fish[,6] # ¢‘Ñlˆõ C <- fish[,7] # Á”ïŽxo P <- fish[,8] # ‘‡•¨‰¿Žw” LQ=log(F2) # ”—Ê LY=log(C/P*100) # ŽÀŽ¿Á”ïŽxo LP=log(F3/F4*100) # ŽÀŽ¿‰¿Ši LH=log(H) # ¢‘Ñlˆõ result <- lm(LQ~LY+LP+LH) summary(result) library(lmtest) library(tseries) fv <- result$fitted.values bptest(result,~fv**2) dwtest(result) e <- residuals(result) jarque.bera.test(e) reset(result) AIC(result) rhodata<-arima (residuals (result), order = c(1,0,0), include.mean = FALSE) rho<-coef(rhodata) rho LQ1=LQ-rho*LQ LY1=LY-rho*LY LP1=LP-rho*LP LH1=LH-rho*LH result1 = lm(LQ1~LY1+LP1+LH1) summary(result1) crho<-coef(result1) c<-crho[1]/(1-rho) c